
Remy Belmonte remy.belmonte@dauphine.eu 

Lab 1

Algorithmic and advanced

Programming in Python

1



Algorithmic and advanced Programming in Python

Outline

1. Some algorithmic complexity question

2. Introduction to python anywhere

3. Do algorithm for double linked list

2



Algorithmic and advanced Programming in Python

Some complexity and running time questions 1/2

3



Algorithmic and advanced Programming in Python

Some complexity and running time questions 2/2

4



Algorithmic and advanced Programming in Python

Python anywhere

• We assume that you’ve got a little bit of basic Python and HTML 
knowledge – for example, that you’ve done an online course in both of 
them. Everything else we’ll explain as we go along. Let’s get started!

5



Algorithmic and advanced Programming in Python

First steps

• Firstly, create a PythonAnywhere account if you haven’t already. A 
free “Beginner” account is enough for this tutorial.

• Once you’ve signed up, you’ll be taken to the dashboard, with a tour 
window. It’s worth going through the tour so that you can learn how 
the site works – it’ll only take a minute or so.

6

https://www.pythonanywhere.com/pricing/


Algorithmic and advanced Programming in Python

Tour

7



Algorithmic and advanced Programming in Python

Tour

• At the end of the tour you’ll be presented with some options to “learn 
more”. You can just click “End tour” here, because this tutorial will 
tell you all you need to know.

8



Algorithmic and advanced Programming in Python

Confirm your email address

• Now you’re presented with the PythonAnywhere dashboard. I 
recommend you check your email and confirm your email address –
otherwise if you forget your password later, you won’t be able to reset 
it.

•

9



Algorithmic and advanced Programming in Python

Dashboard

10



Algorithmic and advanced Programming in Python

Create a first python file to play with list

• Now, click on the “Files” link near the center to create your first file 
on the server

11



Algorithmic and advanced Programming in Python

Do your first step in python interpreter

• Type print(‘hello world’)

• Click on >>>>Run

12



Algorithmic and advanced Programming in Python

You should get this!

13



Algorithmic and advanced Programming in Python

Do not forget to set your professor to me

14



Algorithmic and advanced Programming in Python

Set it to remybelmonte

15



Algorithmic and advanced Programming in Python

Now play with linked list

• Download the file 

Advanced Programming & Algo - 1 - Lab resource.py 

in moodle. 

16



Algorithmic and advanced Programming in Python

Now play with linked list

• The file Advanced Programming & Algo - 1 - Lab resource.py 

in moodle contains an incomplete implementation of a Python 
LinkedList class. Take a minute to look over this code. Open a Python 
interpreter and experiment with creating a LinkedList object and calling 
the methods that have already been implemented.

17



Algorithmic and advanced Programming in Python

Exercise: question 1

1. Implement the count method, which should return a count of the 
number of times that the given item is found in the list.

18



Algorithmic and advanced Programming in Python

Question 2: Index method

• Implement the index method. This will be very similar to the included 
__contains__ method, except that it needs to return the index of the 
element if it is found, rather than a simple boolean. Thus, you will 
need to track the current index as you traverse the linked list.

19



Algorithmic and advanced Programming in Python

Question 3

• Implement the append method, which should add a new element onto 
the tail of the list. You must also remember to handle the special case 
when the list is empty. Given the current implementation, there is no 
O(1) way to add an element to the tail of the list. You have two options 
to implement this function:

• Iterate to the end of the list, finding the last node and adding the new 
node after that node. This will be O(n) but that is ok for the purposes 
of this lab.

• Add a _tail reference to the LinkedList class and use it to add a new 
item in O(1) time. This is a better solution, but will require you to 
change several other functions to properly maintain the tail pointer.

20



Algorithmic and advanced Programming in Python

Question 4: equal and not equal

• Implement the __eq__ and __ne__ methods. For these functions, 
equality should be defined as follows: both lists have the same number 
of elements, and each pair of corresponding elements in the list are 
also equal (as defined by the == operator). You should implement only 
one of these operators from scratch; the other should delegate to the 
first.

21



Algorithmic and advanced Programming in Python

Optional 1

• (Optional) Implement the insert method. One way of organizing this 
method is to work through the following steps:

• If necessary, convert the index value from negative to positive.

• Raise an exception if the index is out of bounds.

• Create a new node to contain the item being inserted.

• Check to see if insertion should occur at the head, if so handle that as a 
special case.

• If the item is not being inserted at the head, use a loop to step through 
the correct number of nodes, keeping track of a prev_node and a 
cur_node. Insert the new node at the appropriate location.

• Increment the size of the list.

22



Algorithmic and advanced Programming in Python

Optional 2

• (Optional) Implement the remove method. You will need to traverse 
the list looking for the item to remove, keeping track of the 
predecessor node so that you can reconnect the two separate parts of 
the list after removal. If the item is not found in the list, the method 
should raise a ValueError.

23


